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Abstract—Wide-angle (fisheye) lenses are often used in virtual
reality and computer vision applications to widen the field of view
of conventional cameras. Those lenses, however, distort images.
For most real-world applications the video stream needs to be
transformed, at real-time (20 frames/sec or better), back to the
natural-looking, central perspective space.

This paper presents the implementation, optimization and
characterization of a fisheye lens distortion correction application
on three platforms: a conventional, homogeneous multicore
processor by Intel, a heterogeneous multicore (Cell BE), and
an FPGA implementing an automatically generated streaming
accelerator. We evaluate the interaction of the application with
those architectures using both high- and low-level performance
metrics. In macroscopic terms, we find that todays mainstream
conventional multicores are not effective in supporting real-time
distortion correction, at least not with the currently commercially
available core counts. Architectures, such as the Cell BE and
FPGAs, offer the necessary computational power and scalability,
at the expense of significantly higher development effort. Among
these three platforms, only the FPGA and a fully optimized ver-
sion of the code running on the Cell processor can provide real-
time processing speed. In general, FPGAs meet the expectations
of performance, flexibility, and low overhead. General purpose
multicores are, on the other hand, much easier to program.

Keywords-Cell, FPGA, Image Warping, Performance Evalua-
tion

I. INTRODUCTION

Difficulties in scaling single-thread performance and limit-
ing the power envelope in high performance processors, has
forced CPU vendors to introduce general purpose multi-core
units in a single die. Moreover, there is a growing trend in
the High Performance and Desktop computing communities
to include accelerators to speed up time consuming, number
crunching application kernels. Reconfigurable logic, such as
FPGAs, vector processors such as the Synergistic Processing
Elements (SPEs) in Cell processor, and Graphics Processing
Units (GPUs) have been shown to speed up applications in
multimedia, graphics, data mining, scientific computing, etc.
by orders of magnitude, compared to conventional multi-cores
[10] [22].

There is little systematic research on how accelerators based
on different computing substrates, such as multi-cores, vector
accelerators, and reconfigurable devices compare in terms of
performance, memory behavior, and ease of programming.

This paper attempts to advance our understanding in these is-
sues by characterizing an important image warping application
- fisheye lens distortion correction - on three contemporary
platforms, namely an x86 Chip Multiprocessor (CMP), the
Cell processor, and a Virtex-4 FPGA (III).

Fisheye lenses allow imaging a large sector of the sur-
rounding space instantaneously (II). While ordinary rectilinear
lenses map incoming light rays to a planar photosensitive
surface, fisheye lenses map them to a spherical surface, which
is capable of a much wider field of view (FoV). It is possible,
and in fact very common, for fisheye lenses to encompass a
FoV of 180𝑜. Such hemispherical images have been tradition-
ally used for applications such as consumer digital imaging
and video capture, video surveillance [18], robot navigation
[14], content creation for immersive environments and virtual
reality [27], photography [29], astronomy, etc. Fisheye lens
distortion correction is an image warping application which
transforms the distorted images back to the natural-looking,
central perspective space (Fig. 1).

This paper explores how the inherent parallelism of the
wide-angle lens distortion correction algorithm is exploited
on different computational fabrics to achieve real time func-
tionality for megapixel input frames (IV). It also presents a
detailed characterization of macroscopic performance (IV-A)
and lower-level metrics (IV-B). Although the algorithm has
a high degree of data level parallelism at multiple levels of
granularity, the exploitation of this parallelism is not trivial
due to complex memory access patterns.

Some of the most important findings of the paper are the
following: although the architecture of cache-based, general
purpose multi-core systems has been described as being
mismatched to streaming workloads, due to lack of spatial
locality of streaming data references, our characterization
shows that this is not necessarily the case. For streaming
imaging applications that require substantial processing per
pixel, such multi-core processors perform at least as good
as the Cell processor per executing thread. Both platforms
achieve speed up which is linear to the number of executing
threads (8𝑥 and 4𝑥 for the Cell and Core 2 Quad, respectively).

Moreover, processors that rely on spatial computing to
”spread out” parallel tasks (Cell and FPGA), require placement
of pixel data close to the execution cores to meet performance



 

Fig. 1. The wide-angle lens distortion correction algorithm for two cases for field of view FoV = 60𝑜 and FoV = 8𝑜. The output images are VGA (640x480).
The lower FoV results into a zoomed output image.

requirements. By placing pixel data in the Local Stores of
the SPEs and the on-chip SRAMs of FPGAs, the distortion
correction application becomes compute-bound, rather than
memory bound, and can meet the bandwidth requirements of
multiple independent threads. This pixel placement is more
critical for FPGAs which cannot rely on high-speed buses and
memory controllers to feed their computation units.

In addition to performance, development time is recognized
as an important component of overall effectiveness of a target
platform. Although FPGA devices have the highest develop-
ment time, the effort to develop and optimize the application
on the Cell processor was actually comparable to that on the
FPGA device, especially when using an architectural synthesis
tool [5] to map the application to the reconfigurable fabric.

II. FISHEYE LENS DISTORTION CORRECTION
ALGORITHM

The stereoscopic geometry of wide-angle photography does
not comply with the conventional central perspective projec-
tion shown in Fig. 2a. The latter is based on the premise that
the incidence angle of an incoming ray from an object point is
equal to the angle between the ray and the optical axis. Object
points with incidence angle close to 90𝑜 would be projected
to a point at infinite distance from the principle point, thus
limiting the FoV to angles close to the optical axis.

The wide-angle projection model is based on the principle
that the incidence angle is proportional to the distance between
the image point and the central point i.e. (Fig. 2b). The
incoming rays are refracted closer to the optical axis, thus
expanding the FoV.

In order to associate the coordinates (i,j ) of a point at the
2D central perspective image space to the coordinates (x,y)
of the corresponding point at the wide-angle space (inverse
mapping), one has to first compute the coordinates (𝑋 𝑐, 𝑌𝑐, 𝑍𝑐)
of the projection of the (i,j ) point to the 3D camera coordinate

system by applying a rotation matrix:
⎡
⎣
𝑋𝑐

𝑌𝑐

𝑍𝑐

⎤
⎦ =

⎡
⎣
𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎤
⎦×

⎡
⎣
𝑖
𝑗
1

⎤
⎦

After some algebraic transformations [25], the equations
that describe the projection on the image plane when using
wide-angle lens are:
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where (𝑋𝑐, 𝑌𝑐, 𝑍𝑐) are object point coordinates on the 3D cam-
era coordinate system, 𝑑𝑥, 𝑑𝑦 are lens-distortion parameters,
𝑥ℎ, 𝑦ℎ are the coordinates of the principle point and 𝑅 is the
image radius.

Note that equations (1) produce a fractional pair of coor-
dinates at the wide-angle plane, and the pixel value at that
point has to be interpolated based on the values of the pixels
at neighboring integer positions.

Bicubic interpolation is a robust, yet computationally ex-
pensive technique used to approximate intermediate points of
a continuous event given the interpolation nodes, or sam-
ple points [16]. Although other techniques such as nearest
neighbor or bilinear are simpler and more widely used in
hardware implementations, the high PSNR1 requirements of
the fisheye correction module makes this the method of choice.
The bicubic interpolation method uses cubic sampled functions
to approximate an intermediate value based on the fundamental
property that the sample function is equal to the interpolation
function in the sample points.

As a last step, at an extra computational cost, we apply

1Peak Signal to Noise Ratio is frequently used to measure signal quality
in images.



(a) Central Perspective projection model (b) Wide-angle projection model

Fig. 2. Projection model of fisheye lens.

1: {Input: The frames (in the wide-angle space) to be corrected}
2: {Output: The corrected frames (in the perspective space)}
3: for all frames do
4: for all pixels in the output frame do
5: Compute the corresponding fractional position in the input

frame (InverseMapping())
6: Interpolate the pixel value at that fractional position

(BicubicInterpolation())
7: end for
8: Apply a 2-D low-pass filter to resize the output frame (LPF())
9: end for

Fig. 3. High-level pseudocode of the fisheye lens distortion correction
algorithm.

a 5-tap vertical and a 5-tap horizontal low pass filter on
the corrected image in order to downscale it to a VGA
(640x480) output resolution2. The low pass filter has the
additional positive effect of eliminating any potential high
frequency artifact noise on the image. The pseudo-code in
Fig. 3 outlines the algorithm. The inverse mapping and two-
dimensional bicubic interpolation flows are depicted in more
detail in Fig. 4.

III. INTRODUCTION TO TARGET PLATFORMS

A. Intel Core 2 Quad

The Intel Core 2 Quad Q9300 is a representative implemen-
tation of mainstream, homogeneous multicore systems. The
processor is clocked at 2.5 GHz and supports a 1.3 GHz FSB
(front side bus). It is organized as two independent dual core
processor blocks packaged together. Each of the dual core
blocks integrates a 3MB L2 cache (12 way set associative, 64
bytes cache line), shared between the two cores of the block.
Moreover, each core accesses a 64KB private L1 cache (32KB

2The fisheye lens distortion correction algorithm is used in the context of
a video conferencing system.

data + 32KB code, 8-way set associative, 64 bytes cache line).
If the two dual core blocks have to communicate, they do so
through the FSB. The processor has a thermal design power
of 95W and supports the SSE 4.1 vector instructions set. The
system we used for our experimental evaluation is equipped
with 2GB dual-channel, DDR2 RAM, clocked at 667 MHz.

B. Cell Broadband Engine (CBE)

The Cell BE is an heterogeneous multicore processor. It
integrates 8 Synergistic Processing Element cores (SPEs) and
a separate 2-way SMT PowerPC core (PPE) [15]. These 9
cores, the main memory and the I/O interfaces are connected
by an on-chip network, the Element Interconnect Bus (EIB).
The processor is clocked at 3.2 GHz. Each SPE is organized
as an 128-bit wide SIMD computational engine (Synergistic
Processing Unit - SPU) and a Memory Flow Controller (MFC).
There is a single 128x128 bit register file per SPE. Each
SPE accesses a private, 256KB local storage (LS). The LS
has bandwidth and latency characteristics similar to those
of an L1 cache, however its content is explicitly software-
controlled. It is shared by both program code and data.
SPEs can not directly access the main memory. They can,
instead, issue asynchronous DMA requests to transfer data
between main memory and the LS, or between LSs of different
SPEs. Up to 2 SIMD instructions can be issued per cycle -
although specific instructions on each issue slot - resulting to a
maximum theoretical performance of 204.8 Gflops for single-
precision and 14.63 Gflops for double-precision floating-point
operations. The typical power consumption envelope of a CBE
processor is 60-80W.

The system we used for our experimental evaluation is an
IBM QS20 blade, equipped with 1 GB of external DRAM.

C. Reconfigurable Logic
Compared to the fixed hardware of the Core 2 Quad and Cell

architectures, reconfigurable devices (FPGAs) are essentially



Fig. 4. Inverse mapping is used to convert the coordinates from the perspective space back to the wide-angle space. A 4x4 pixel neighborhood around the
fractional points on the distorted space is used to perform bicubic interpolation and compute the pixel values at the fractional points.

high density arrays of uncommitted logic blocks that are
configured post-fabrication [7]. The functionality of FPGAs
is determined through configuration bits which are used to
specify the functionality of the configurable logic blocks and
the routing channels between them. Modern FPGAs also
contain ”islands” of hard intellectual property (IP) logic such
as general purpose microprocessors, slices of DSP logic, and
on-chip SRAMs.

Reconfigurable devices offer the highest degree of flexibility
in tailoring the architecture to match the application, since
they essentially emulate the functionality of a custom chip,
i.e. ASIC (Application Specific Instruction Set). FPGAs avoid
the traditional ISA-based von-Neumann architecture, followed
by CPUs and the Cell processor, and can trade-off computing
resources and performance by selecting the appropriate level
of parallelism to implement an algorithm. Since reconfigurable
logic is more efficient in implementing specific applications
than multi-core CPUs, it enjoys higher power efficiency than
any general purpose computing substrate.

The main drawbacks of FPGAs are twofold: first, the
FPGAs are primarily programmed using Hardware Description
Languages (VHDL or Verilog), which is a time-consuming and
labor-intensive task, and requires deep knowledge of low-level
hardware details. Although there has been a growing trend to
program FPGA applications using high level languages, such
as C-like languages [11], [19] and [23], most FPGA developers
continue to use VHDL or Verilog to map their applications into
the reconfigurable fabric.

Second, the achievable clock frequency in reconfigurable
devices is lower (by almost an order of magnitude) compared
with the full custom design of high performance processors.
In fact, almost all FPGA designs operate in a clock frequency
less than 200 MHz, despite the aggressive technology scaling
of FPGA devices3.

We use the Virtex-4 LX80 FPGA to implement the distor-
tion correction hardware module. The LX80 device includes

3Next generation Virtex-6 FPGAs from Xilinx will be fabricated at 40nm
CMOS technology.

80,460 logic cells, 200 on-chip SRAMs (18 Kbit each) and 80
DSP slices [2]. The hardware module is part of an embedded
System On Chip (SoC), which also includes a Microblaze
processor, a multi-port memory controller to provide high-
bandwidth access to external SDRAM memory, and a variety
of peripheral units. The FPGA device operates using a single
clock at 62.5 MHz.

Using an internally developed architectural synthesis toolset
and programming methodology, we generated the FPGA mod-
ule without using a hardware description language. Proteus,
our CAD tool [5], produces hardware accelerators that fol-
low the streaming architectural paradigm [3]. This approach
produces several independent load/store units (called stream
interface units, SMIFs) used to prefetch data from wide, slow
memories and turn it into narrow, high-speed streams of vector
elements. It also generates the data path used to execute the
program, which is expressed using an assembly-like streaming
Data Flow Graph (sDFG).

Design automation allows us to turn FPGA program-
ming from gate-level to algorithm-level and quickly convert
the sDFG for our application (approximately 800 lines of
code) into very efficient, synthesizable Verilog (approximately
100,000 lines of code).

IV. ALGORITHM OPTIMIZATIONS FOR PARALLEL
EXECUTION

This section outlines the restructuring and optimizations of
the original code in order to exploit the diverse parallel archi-
tectures of Core 2 Quad, Cell, and FPGA. Some optimizations,
especially the higher level ones, are common to all platforms.
Others are only fit for specific architectures.

A. High-level Optimizations

An important observation from the algorithmic analysis of
section II is that the fractional pixel coordinates follow a com-
plicated non-linear pattern (Fig. 4). Although the trace is not
data dependent, and thus can be theoretically pre-computed,
the complex memory access pattern deems aggressive DMA
prefetching impractical.



Fig. 5. Block diagram of the fisheye lens distortion correction pipeline implemented in reconfigurable logic.

We alleviate this problem by applying 2D tiling in each
frame, a technique used by optimizing compilers to improve
cache hit rate. We partition the output frame in blocks of
equal size, and produce pixels block by block, by assigning
one block to one thread (Core 2 Quad) or SPE (Cell). By
tiling computations to exploit reuse at the block level, we
also facilitate data distribution to SPE Local Stores in the Cell
processor, and to the on-chip SRAMs of the FPGA, and we
improve locality on the cache memory hierarchy of the Core
2 Quad architecture. Tiling allows us to store the working set
within a small and constant latency from the computational
units, instead of in remote (and possibly off-chip) memories.

Moreover, organizing computations around pixel tiles fa-
cilitates task-level pipelining and allows multiple tiles to be
processed in the computational pipeline at any moment. In
this scheme, each pipeline stage is dedicated to a single
transformation so that successive tiles are processed simul-
taneously. For example, while all pixels of tile N are being
processed in the bicubic interpolation stage, the tile N+1 is
in the inverse mapping stage. We apply pipelining only to the
FPGA implementation, which can exploit customization of the
different pipeline stages to the task they execute. Pipelining
is also possible for fixed architectures such as the Core 2
Quad and the Cell, however the application offers enough
data-parallelism to exploit the 4 and 8 respectively execution
contexts of these processors. Fig. 5 shows the pipelined block
diagram of the streaming accelerator for fisheye lens distortion
correction as implemented in the Virtex-4 FPGA.

B. Low-Level Optimizations

The fisheye lens distortion correction algorithm has abun-
dant data level parallelism which can be exploited by the
SIMD extensions of Core 2 Quad and Cell. Most calculations
shown in Fig. 3 are enclosed in doubly-nested loops. The
outer loop (pixel scan) first computes the fractional coordinates
of each pixel in the tile (inverse mapping) and then applies

bicubic interpolation within a nested loop of three iterations,
one iteration for each of the color components (RGB). Like-
wise, two subsequent outer loops are used for the vertical and
horizontal low-pass filtering, each enclosing a second-level
nested loop with three iterations.

We utilize the SIMD capability of Core 2 Quad and SPEs
by vectorizing four FP operations in inverse mapping, bicubic
interpolation and low pass filtering. The implicit loop unrolling
due to vectorization has the positive side-effect of reducing
the backward branches of the outer loop by a factor of 4.
An additional explicit 3x unrolling of the inner loops furthers
the positive effects of branch elimination and increases the
potential for efficient instruction scheduling. This is important
for SPEs, in which mispredicted branches incur a large penalty.
The SIMDization and loop unrolling provides a cumulative
speed up of 12.4𝑥 for Cell, and 1.7𝑥 for the Core 2 Quad.

The loop unrolling optimization produced a large number
of instructions that could be scheduled in parallel in the dual-
issue pipeline. However, experimental results showed that the
compiler was too conservative on rescheduling independent
instructions. In order to reduce the pipeline stalls and produce
a faster executable, we manually schedule the instructions at
the source code level. We interleave the instructions that access
the memory with computational operations, thus enabling the
compiler to schedule them more efficiently and eliminating
most of the remaining pipeline stalls.

Bicubic interpolation accesses memory addresses that are
not optimally aligned for vector loading operations (Fig. 4).
The aforementioned implicit loop unrolling requires each row
of the 4x4 window to be stored in a vector register, so the
compiler inserts extra instructions in order to move the scalar
data to the preferred slot. If vector registers are loaded row-
wise, data dependencies from previous loads stall future loads
on the same register, making the vector register a point of
contention. We eliminate most of these stalls by reversing the
order of storing in the vector registers. We load the registers
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column-wise instead of the intuitive row-wise order. This
modification spreads out the instructions that access the same
register, allowing enough time to load a pixel into a register,
before loading the next one on the same register.

Moreover, the function that performs bicubic interpolation
includes a conditional statement that checks whether a given
location is inside the frame boundaries. After applying the
SIMD optimization, we need to extract the coordinates of
each point from the corresponding vector registers in order to
evaluate these statements. We face a problem similar to that
of unaligned loads, since we need to extract the individual
coordinates, calculate the value of the conditional, and then
execute or bypass the instruction in the body of the conditional
statement. In order to eliminate the additional stalls that are
inserted due to the consecutive extraction operations from a
vector register, we vectorize the calculation of the conditionals,
move them at the beginning of the outer loop, and extract the
conditional values enough cycles before they are needed. The
aforementioned low-level optimizations are described in more
detail in [8].

A final optimization step for the Cell processor is to move
the inverse mapping task to the PowerPC (PPE) processor,
instead of the SPEs. As aforementioned, the correspondence
of input versus output pixel coordinates depends solely on
the region of interest (ROI) and the field of view (FoV), but
not on pixel values. These two parameters can be changed
interactively at run-time, however this occurs infrequently, if at
all. As a result, the cost of inverse mapping can be amortized,
if it is computed once and reused across multiple frames.
This is achieved at the expense of storage space: the size
of the resulting data structure is 4.8 MB, since it contains
1280x960 pairs of single-precision floating points. However,
a data structure of that size cannot be accommodated in the

local store of SPEs. In section V.B we evaluate this option in
detail.

The FPGA implementation of Fig. 5 exploits the flexibility
of the reconfigurable fabric by scheduling a large number
of sDFG operations (around 400 in all pipeline stages) in
each cycle using the modulo scheduler of Proteus. By placing
incoming pixel data, and inter-stage intermediate results in the
on-chip SRAMs of the reconfigurable device, the architecture
keeps the wide data path fully utilized, and eliminates stalls
due to memory latency. The intermediate on-chip buffers of
Fig. 5 play the role of Local Store buffers in the Cell processor.
The fisheye distortion correction module for the FPGA was
developed using the Proteus CAD tool [5] and is described in
more detail in [6].

We evaluated the execution time of the application with a
FoV varying from 1.0𝑜 to 60.0𝑜 and for all possible ROIs
on the input frame, and we found the execution time to
be insensitive to these parameters. This was expected, since
the size and resolution of the output image are fixed, and
the amount of computation per output image pixel is not
dependent on the input data and parameters. For the rest of
the paper, we assume that the FoV is 40.0𝑜.

V. PERFORMANCE EVALUATION OF THE FISHEYE
LENS DISTORTION CORRECTION ALGORITHM

In this section, we evaluate the performance of fisheye
lens distortion correction on the three platforms we described
in section III. All results are obtained from executing the
application on real hardware, rather than on simulators.

The application was compiled on the Core 2 Quad using
both Intel’s icc compiler and gcc, with the compiler opti-
mization flags that resulted to the lowest execution times. The
performance of executables produced by icc proved slightly
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higher, so we only report these results. The code on the Intel-
based platform has been parallelized using POSIX threads.
Performance data have been collected by Intel VTune perfor-
mance analyzer [13] and Intel Thread Profiler [12].

The application was compiled on the Cell processor using
both gcc (version 4.2.1) and xlc compiler (version 9.0). The
performance of the executables produced by gcc was higher,
so we only report results using gcc. Low-level performance
data have been collected by the Cell Performance Counter
tool (CPC) [1] which is used for setting up and monitoring the
hardware performance counters in the Cell processor. These
counters allow the user to quantitatively evaluate interactions
at the hardware / software boundary.

A. Performance and Scalability Analysis

Fig. 6 illustrates the performance of the application in
terms of processed frames/sec in each platform after each
optimization, i.e. HL for high-level optimizations only, HL+LL
for high- and low-level optimizations, and finally IMA (inverse
mapping amortization) when inverse mapping is executed
once and the fractional coordinates are stored in memory and
reused.

As a first observation, the speed up is proportional to the
number of execution contexts available by the underlying
platforms (i.e close to 8𝑥 and 4𝑥 for Cell and Core 2 Quad,
respectively). This is expected, since there is no dependency
between threads in this application. Moreover, the memory and
bus hierarchies are able to keep the data paths close to full
utilization, i.e. the application is compute-bound for all cases
we measured. Assuming that we require real-time processing
of at least 20 frames/sec (for human viewing), we observe
that only the Cell processor and the FPGA can deliver it. The
scalability results, combined with the low-level performance
analysis discussed in the following subsection allow us to
speculate that, should the Core 2 Quad processor be equipped
with 8 cores, it would also probably be capable of achieving
real-time performance. In all cases, reconfigurable computing
shows its advantages over von Neuman-based CPUs, since
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the FPGA is 37.5𝑥 faster per Hz of execution than the Cell
processor using all eight SPEs, and 56𝑥 faster per Hz than the
Core 2 Quad processor using all four threads.

Exploiting fine-level parallelism with vectorization and
loop unrolling provided 12.4𝑥 speed up for Cell and 1.7𝑥
speed up for Core 2 Quad, compared with the HL optimiza-
tions only. This is a testament of careful source code rewriting
(most probably, manual) needed to optimize SPE execution.
The lack of a dynamic branch prediction mechanism in hard-
ware, the lack of automatic or compiler assisted SIMDization,
as well as the overly conservative instruction scheduling by the
SPE compiler, place the burden on the programmer to produce
optimized code.

Finally, inverse mapping amortization proved to be benefi-
cial only for the Cell processor and provided an extra 1.43𝑥
speed up with respect to the HL+LL optimizations. As far
as the Core 2 Quad processor is concerned, after applying
the LL optimizations the compiler produced very optimized,
inlined code for inverse mapping function, thus making its
contribution to the total execution time negligible.

Fig. 7 depicts the total number of retired instructions and
the effective CPI for the three platforms when all available
resources are used. Note that the CPI of the FPGA at around
0.0015 is approximately 500 times smaller than the CPI of
the two CPUs. The three platforms are based on different
ISAs, thus a direct CPI comparison among them is not valid.
Nevertheless, this number is a good indication of the superior
resource utilization offered by reconfigurable devices.

In order to better understand the reason why SIMD opti-
mizations have such a different effect on the Core 2 Quad and
Cell platforms, we break down the function execution times in
Fig. 8. The SPEs in Cell processor spend approximately 75%
of their time executing inverse mapping in the HL optimization
case, i.e. before any low-level optimizations, whereas the Core
2 Quad spends only 18%. These percentages drop to 15% and
0.3% (due to inlining and compiler optimizations) respectively
after the LL optimizations are applied.

This runtime imbalance is mainly due to the superior
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performance of the x86 floating point unit and the capability to
execute the elementary functions of eq. 1 in hardware, rather
than with software libraries, as in Cell. In that case, vector
optimizations are critical in improving the total execution time.

Note that in the pipelined FPGA module, the execution time
per frame is equal to the longest executing task, which is
the bicubic interpolation. In this case, Fig. 8 implies that the
low pass filters (both vertical and horizontal) and the inverse
mapping finish earlier and have to spin-wait before they start
with the next tile. The limiting factor in exploiting additional
ILP in the bicubic interpolation stage, in order to reduce its
latency, is the number of output ports in the pipeline SRAMs
between stage 1 and stage 2 of the FPGA.

B. Memory Performance

A key performance limiting factor in many streaming ap-
plications is the off-chip bandwidth requirements. Fig. 10
depicts the amount of data transferred per second from main
memory to the chip for the three target architectures. The
amount of data transfers per frame is almost fully predictable.
Approximately 4.98 MBytes of input data need to be fetched,
in order to generate an output frame of 900 Kbytes which has
to be stored on disk or presented on screen. Inverse mapping
amortization across different frames may generate additional
traffic. If the combined capacity of outer-level caches - i.e. the
L2 for Core 2 Quad and all LSs for Cell BE - is not sufficient
to fully accommodate the working set for the computation of
a frame, the fractional coordinates, namely up to 1.32 MBytes
of additional data per frame, may also need to be transferred
from the main memory.

Fig. 9 depicts the off-chip data transfers per instruction
executed. At most 0.007 bytes need to be transferred from
the main memory for the execution of each instruction. This
proves both the effectiveness of 2D tiling in terms of data
reuse, and the compute intensity of the application.

The rate is significantly lower for the Core 2 Quad than for
the Cell BE, due to the larger combined outer-level cache of
the former (6MB L2 in Core 2 Quad vs 2MB LSs and 512
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KB L2 in Cell).
For the Cell BE, Fig. 9 reveals that the amortization of the

inverse mapping cost results to more transfers per instruction.
This is expected, since the LSs cannot accommodate both the
input and output data for each frame, including the fractional
coordinates. As a consequence, the coordinates always need to
be transferred from the main memory on a tile-per-tile basis.
At a first glance the diagram also seems to indicate that the
Cell code is less memory efficient when the low-level opti-
mizations are applied. This is however not true; the observed
difference can be attributed to the significant reduction in the
number of instructions that comes with SIMDization and loop
unrolling.

It should be noted that the discussion in this subsection
refers to average memory bandwidth requirements. However
memory transfer requests often tend to be bursty, causing
stalls, should the memory subsystem prove incapable of ef-
ficiently serving the bursts. This issue is discussed in the
following subsection.

C. Analysis of stalling time

The number of stall cycles is a metric that quantifies exe-
cution delays due to either resource shortage or architectural
bottlenecks. Fig. 11 illustrates the total number of stall cycles
on the Core 2 Quad and the Cell BE under different degrees
of optimization. Apart from the totals, it also reports the stall
cycles due to two major delay factors, namely the interaction
with the memory subsystem and the mispredicted branches.
It has to be mentioned that other events, such as delayed by-
passes, DTLB misses or blocked loads, which also contribute
to the total number of stalls, are not reported individually in
the charts, since their individual contribution is less profound.

It can be easily observed that the Cell BE is, due to its
purposely simple architectural design, less forgiving to sub-
optimal software. The number of stall cycles is significantly
higher for the tiled version of the code, on the Cell BE than on
the Core 2 Quad. However, the low-level optimizations result
to the elimination of most stalls on the Cell BE. At the same
time, they reduce stall cycles by approximately 50% on the
Core 2 Quad.

The sophisticated branch predictor of the Intel processor
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manages to practically eliminate all stalls related to branch
mispredictions. On the contrary, the Cell BE does not have a
branch prediction unit. It predicts all branches as not taken -
unless explicitly hinted otherwise by software - and charges a
penalty of 20 cycles for mispredicted branches, whereas the
typical instruction latency is 2 to 7 cycles. It should be noted
that this penalty is always paid in the case of backward loop
branches. The low-level optimizations, and more specifically
loop unrolling and SIMDization, reduce the number of loop
iterations, and as a consequence the number of backward
branches. The branch-related stalls are further reduced (and
almost eliminated) by software hinting. A significant contribu-
tor of stall cycles is the interaction between the processor and
the memory hierarchy. Bursty memory access patterns may
introduce stalls due to conflicts for cache ports, or shortage
of slots in the load and store queues of the processor. The
problem is worse on the Cell BE, where the Local Store
is single-ported. SPE initiated requests may contend with
each other, as well as with DMA transfers. Once again, low-
level optimizations result to a significant reduction of memory
related stalls. Loop unrolling allows the production of more
efficient instruction schedules. Manual instruction scheduling,
especially in the case of Cell BE, also reduces conflicts in
cases where the compiler proves overly conservative.

DMA transfers between LSs and the main memory may
also introduce delays due to either contention for EIB chan-
nels, or due to the DMA transfer latency itself. Double
buffering proves very effective in overlapping these delays
with computation. The CPC tool reported a limited cumulative
number of stalls attributed to DMA transfers, which are
approximately 600 cycles in the worst case.

D. Development Cost

Development cost is increasingly recognized as a signifi-
cant component that needs to be considered when adopting
a new platform for application development. We measure
programming effort as one aspect in the comparison of the

programming models of the three platforms. Because it is
difficult to get accurate development-time statistics for coding
applications and also to measure the quality of code, we
use Lines-of-Code (LOC) as our primary metric to quantify
programming effort.

The initial single-threaded C version was approximately
800 lines of source code. The fully optimized Cell version
required an extra 1500 LOC, while the fully optimized x86
code required only 500 lines of extra code. The FPGA sDFG
was written using approximately 800 lines of assembly-like
instructions. Moreover, the FPGA implementation required
multiple time-consuming synthesis, place & route iterations
which should also be counted in the total development effort.

Based on these findings, the Core 2 Quad architecture seems
to have better programmability in general, whereas the Cell
processor has a slight advantage over the FPGA. However,
based on the total measured development time, we think that
designing and implementation of reconfigurable systems using
high level languages (an area of intense research the last few
years) will be very competitive in terms of development effort
compared to multicore and manycore systems.

VI. RELATED WORK

The attention of both high-performance and general-purpose
computing has lately turned to multicore systems, due to the
diminishing performance returns of increasing processor clock
frequency, and the associated power consumption and heat
dissipation problems. At the same time, hardware accelera-
tors - such as FPGAs, GPUs, or non-conventional multicore
architectures such as the Cell BE - are often used to improve
performance of computationally demanding algorithms or ap-
plications with execution time constraints.

Baker et al. describe the implementation of a matched
filter on an FPGA, the Cell BE and a GPU [4]. Similarly,
Thomas et al. implement a random number generator on a
CPU, GPU, FPGA and a massively parallel processor (MPP)
[26]. In [28] the authors describe the implementation of the
map-reduce programming model on FPGAs and GPUs and
in [17] they do the same for the Cell BE. The map-reduce
infrastructure is consecutively used for the implementation of
simple applications.

All the aforementioned papers focus on macroscopic met-
rics, such as speedup over a CPU and price/performance or
power/performance ratios. In this paper we analyze the algo-
rithm / hardware interaction using both macroscopic and low-
level performance metrics across different platforms. We also
identify and quantify the effects of optimizations both within
and across architectures. Our work is targeted towards whole
system performance instead of focusing on a specific system
block. The main drawback of less conventional architectures
- such as the Cell BE, GPUs and FPGAs - compared with
general-purpose CPUs, is that algorithm implementation is
a significantly more labor-intensive task. Previous work has
focused on programming models and support to facilitate
implementations. CellSs [21] and [24] introduce programming
models, compiler and runtime support for task and data



management on the Cell BE. Sequoia [9] and RapidMind [20]
do the same for systems with explicitly managed memory
hierarchies, such as the Cell BE and GPUs.

VII. CONCLUSIONS

Modern conventional multicores and hardware accelerators
- such as the Cell BE, or FPGAs - offer unprecedented com-
putational power that allows the efficient execution of applica-
tions with high computational requirements and stringent time
constraints, which previously required high-performance com-
puting substrates or custom hardware (ASIC) implementations.
In this paper we presented the implementation of a real-time
image warping algorithm - with many real-world applications -
on three architectures: i) a conventional, homogeneous, Intel-
based multicore, ii) an heterogeneous multicore with SIMD
accelerator cores (Cell BE), and iii) an FPGA. We analyzed
and characterized the performance of the algorithm on all
underlying architectures using both macroscopic and low-level
performance metrics. We also applied a series of high- and
low-level optimizations and indentified their effect on both
performance and the interaction with the hardware.

We find that conventional multicores are not capable of
supporting real-time video distortion correction, at least not
with the currently commercially available core-counts per
package. More exotic architectures, such as the Cell BE and
FPGAs offer the necessary computational power, at the cost
of significantly higher development effort. This additional
effort can, however be partially alleviated by advanced tools,
development models and support environments that allow the
developer to focus on accurately expressing the algorithm,
rather than on low-level optimizations.
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